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Abstract

This paper presents an application of a connec-
tionist control-learning system designed for use on
an autonomous mini-robot. This system was for-
merly shown to form useful two-dimensional mappings
rapidly when applied to backing a car with a single
trailer. In the current paper the learning system is
extended to three dimensions and applied to a similar
but significantly more difficult problem. The system is
shown to be capable of rapid unsupervised learning of
output responses in temporal domains through the use
of eligibility traces and inter-neural cooperation within
topologically defined neighborhoods.

1 Introduction

Connectionist control-learning systems have re-
cently received much attention; numerous papers and
several books have been published on this topic in the
last few years (e.g. [13, 17]). An overview of many
such systems as they have been applied to robot con-
trol is given by Prabhu and Garg [16]. Most of these
works, however, have concentrated on simulated sys-
tems and therefore have not had to deal with the ambi-
guities and constraints of the real world. The primary
exception to this has been in the area of navigation
(e.g. [1, 2, 3]). In 1996, Hougen et al [5] presented
a new connectionist system designed for task learn-
ing on a real robot. In the current paper, we present
an extension of this learning system to a significantly
more difficult task.

Learning responses is generally classified into super-
vised and unsupervised learning. In supervised learn-
ing an agent or function, often called the teacher, pro-
vides the desired output response for each input vec-
tor. Systems that do not make use of a teacher, then,
are known as unsupervised learning systems.
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Within unsupervised learning different levels of
feedback may be available. Often an evaluation of
system output is immediately available. This allows
learning to occur for each input vector and output re-
sponse pair. We are concerned with learning in situa-
tions in which a less immediate response is available.

In this paper we examine the problem of backing a
rig consisting of a car and two trailers to a target loca-
tion by steering only the front wheels of the car. This
task is significantly more difficult than the problem ex-
amined previously (in [5]), in which the rig consisted
of a car with a single trailer. No feedback is available
until the task is completed (called terminal feedback)
and the feedback is simply a boolean value (a success
or failure signal).

Control-learning in autonomous robotic systems
provides many challenges. The learning system must
be robust enough to overcome the problems of noisy
input data and uncertain interactions between mo-
tor commands and effects in the world, be compact
enough to fit into available on-board memory, and
be able to give responses in real time. The system
we present here meets these specifications, yet is ca-
pable of unsupervised learning of a difficult credit-
assignment problem.

2 ROLNNET

For rapid output learning in terminal feedback
problems with boolean evaluation functions, Hougen
et al [5] introduced the Rapid Output Learning Neu-
ral Network with Eligibility Traces (ROLNNET). In
order to form mappings from input parameters to out-
put responses, the input space is partitioned by the
system designer into discrete regions and a single ar-
tificial neural element is assigned to each region. Neu-
rons are provided with temporal sensitivity through
the use of eligibility traces and adjust their response
values on task completion. Response learning can take
place rapidly through the use of inter-neural coopera-



tion. This cooperation is based on the neighborhood
concept inspired by Kohonen’s Self-Organizing Topo-
logical Feature Maps [8]. ROLNNET systems can be
seen as a simplification of the more general learning
system introduced by Hougen [4], in which the system
also learns the input space partitioning.

2.1 Neighborhood function

The internal structure of a ROLNNET map is de-
fined by a topological ordering of the neurons that
remains unaltered as the network learns. We use an
8 x 8 x 8 cubic topology. Each neuron is uniquely
numbered with a trio of integers that can be thought
of as its coordinates in topology space. The existence
of a network topology allows for the definition of a
distance function for the neurons. Typically, this is
defined as the Cartesian distance between coordinates
in topology space. For the sake of computational ef-
ficiency, however, we use the maximum difference be-
tween coordinates of the neurons. E.g. for neurons
(1,1,5) and (2,3,4) the distance between them would
be maz (|1 — 2|,|1 — 3|,|5 —4]) or 2.

The distance function is used indirectly through
the definition of neighborhoods. A neighborhood may
have any width from zero (the neighborhood is re-
stricted to the unit itself) to the maximum separation
between units in topology space (the entire network is
in the neighborhood) and may vary with time, typi-
cally starting large and subsequently decreasing.

Formally, if U is the set of units « in the network, d
the distance function defined on topology space, and
W a time dependent function specifying the width of
the neighborhood, then the neighborhood N of neuron
n at time ¢t may be defined as

No(t) = {u€U|dmu) < W@} (1)

All units within a neighborhood may be treated
as belonging to a single class for a particular compu-
tation, and those outside as belonging to a separate
class, giving a discretization which improves the com-
putational efficiency of the method.

The concept of the neighborhood relationship is
borrowed from Kohonen’s Self-Organizing Topological
Feature Maps [8] where the neighborhoods are used for
self-organization of the maps.

2.2 Competition
Each neural element in the network is sensitive to

a particular region in the input space of the prob-
lem. For the present application, in which we have

an 8 x 8 x 8 cubic topology, the three input dimen-
sions are evenly partitioned into eight regions along
each axis. A one-to-one correspendence between neu-
rons and input space regions is defined such that near-
est neighbors (according to the neighborhood relation
described above) are assigned adjacent regions of the
input space.

Each time a new input vector is given to the net-
work the neuron sensitive to the input region into
which the vector falls is declared the “winner”. The
winning neuron gives an output response based on its
response weight value (see 2.4) and has its eligibility
for adaptation increased (see 2.3).

2.3 The eligibility trace

One function of biological neurons which has not
been approximated in the more standard connection-
ist systems is what we refer to as the eligibility trace.
It is known that many neurons become more amenable
to change when they fire (see, e.g. [7]). This plastic-
ity reduces with time, but provides an opportunity
for learning based on feedback received by the neuron
after its activity.

All neural elements in a ROLNNET system have
an eligibility value associated with them. Initially, all
neurons are given an eligibility value of zero. Each
time a neural element fires (wins and gives an out-
put response), its eligibility is increased by a preset
amount which is uniform for all neurons in the net-
work. The eligibility value for each neuron decays ex-
ponentially regardless of whether or not it fires on any
given time step.

2.4 OQOutput weights

Each neural element has a single output weight
which is initially given a random value. Together with
the input region sensitivities described above (2.2), the
weights can be understood as describing a mapping
from car-trailer states to output responses.

The output weights are used to determine the sys-
tem’s response to an input vector. For the present
application, the weight value of the winning neuron
(see 2.2) is examined for its sign alone. If the weight
is positive, the wheels of the car are turned to the
right. Otherwise, the wheels are turned to the left.

When success or failure is signaled, the weights are
updated according to

w"® = sign(w”?)(jw”’| + es(T) f) (2)

where w is the weight, e is the eligibility for adapta-
tion, s is a scaling function that changes with the trial



number T, and f is the feedback signal (+1 for suc-
cess, -1 for failure). The scaling function s is used to
allow for large changes to the weights in early training
trials and smaller changes in subsequent trials. In this
application, s is defined to be

1
T) = 3
0) = T T = mod100 ®)
where T is the trial number. (I.e. For the first 100

trials, s is 1, for the second 100 it is 1/2, for the third
100 it is 1/3, etc.)

2.5 Inter-neural cooperation

After the completion of a trial and the subsequent
updating of each neuron’s weight according to its el-
igibility, inter-neural cooperation takes place. This
consists of each neuron updating its weight a second
time, this time based on the weight values of the other
neurons in its neighborhood. For the present applica-
tion, the neighborhood size is initially 2 and shrinks
to 1 after the first 100 trials.

Each individual neuron ¢ is influenced by its neigh-
bors according to the following equation:

Wn
w; = (1 —a(T)w; + a(T) —
neN;

(4)

where each w is a weight, IV; is the neighborhood of
neuron ¢, m is the number of neurons in that neigh-
borhood, and « determines the degree to which a neu-
ron’s value is “smoothed” with that of its neighbors.
In general, o decreases with time. This means that
each neuron’s value becomes more independent from
those of its neighbors as time passes. In this particular
application, « is defined to be

1
T) = 5
oT) = 3 T =Ty mod 100 ®)
where T' is the trial number. (Le. For the first 100

trials, a is 1/2, for the second 100 it is 1/3, and so
on.)

3 Application

A ROLNNET system has previously been applied
to the task of backing a car and trailer to a goal, both
in simulation and using a real robot [5]. In the present
paper, the task is complicated by adding a second
trailer behind the first. Now the control system has
three inputs: (1) the angle of hitch 1 between the car
and the first trailer, (2) the angle of hitch 2 between
the first and second trailers, and (3) the angle between

the spine of the second trailer and the goal, as shown
in Figure 1. The addition of the second trailer adds
a dimension to the input space of the problem when
compared with [5]. This is reflected in an additional
dimension to the ROLNNET system used.

Wheel Angle.
.-~ Hitch 2 Angle
Goal /
i y S
" Goal Angle " Hitch 1 Angle

Figure 1: The two-trailer-backing problem

The feedback to the learning system is a simple
boolean value. If the rear of the second trailer reaches
the goal, success is signaled. If the absolute value of
any of the angles exceeds 90°, failure is signaled. The
system is clocked to operate in discrete time units. No
other sensory data or feedback is available.

Whereas many simulated mobile robot systems in-
clude such variables as the x and y position of the
robot in Cartesian space, we do not. This is primar-
ily because our system is designed to operate in the
real world where it would be difficult for the robot to
acquire its own x and y coordinates.

3.1 Experimental design

We studied two cases that varied in the range of
possible initial car-trailer-trailer positions. For both
cases, the system was trained in a series of runs of
1000 trials each.

Case 1: the rig was started with the back of the sec-
ond trailer from two to five feet from the target,
and with each of the three angles between —6°
and +6°. New initial conditions were chosen ran-
domly at the start of each trial with a uniform
distribution over the entire range.

Case 2: this is identical to case 1, except that the rig
was started with the back of the second trailer
from three to six feet from the target and all an-
gles between —5° and +5° each.

While the maximum initial angles specified in the
case descriptions may seem small, it should be noted
that the inherent instability in backing a rig with pas-
sive trailers means that, for a two trailer system like
the one described, large differences in angles will in-
evitably lead to a failure state, regardless of the con-
trol signal given. This is because if the signs of the
angles between adjacent units in the rig are opposite



the active car must swing out in arcs wider than those
traced by the first trailer in order to move it around
into position to correct the trajectory of the second
trailer. However, in trying to bring the car into such
a position, the angle between the trailers and that be-
tween the second trailer and the goal are increased in
magnitude as the entire rig backs up. In order for the
system to be able to physically maneuver to the goal
with larger possible initial angles, it would be neces-
sary for the system to utilize forward motion, as well
as backing. In fact, a simple forward move of even
a short distance with the wheels straight would serve
to bring even a doubly jackknifed rig to within the
bounds given for our initial angles in these cases, and
so our limits are sufficient to also cover those cases
where such an initial forward motion is possible.

(c)

Figure 2: Example trial. (a) start, (b) progress (shown
every fifteenth time step), (c) end.

A total of 100 runs (of 1000 trials each) were made
in simulation for each of the cases, using different ran-
dom seeds for both the initial starting positions for
each trial and for the random initial values of the out-
put weights. At the start of each trial, the eligibil-
ity for adaptation for each neuron was set to zero.
On each time step the learning system was given the
current values of the trailer and hitch angles and, if
applicable, a failure or success signal. The network re-
sponse was thresholded and values less than zero were
used as hard left control signals, while values equal to
or greater than zero are used as hard rights. In this
way, the system was given bang-bang control. An ex-
ample trial is shown in Figure 2 and the averages over
all runs are plotted in the graphs in Figure 3. The
horizontal axis on each graph gives the trial number
while the vertical axis gives the success rate.

3.2 Experimental results

The system described in this paper must meet many
varied and sometimes conflicting challenges. Some of
these are inherent in the task to be learned, some are
imposed by our desire to use small yet autonomous
mini-robots, and some we have imposed on ourselves
to study learning in completely unsupervised domains.
The results in this section show that the system is able
to function in the demanding environment in which we
have placed it.

The three most prominent features of the results
graphs are the two relatively flat regions, one at the
beginning of each graph and the other at the end, and
the steep slope in between. All of these features are
significant.

The first flat region, running from trial zero to ap-
proximately trial 100 reflects the neighborhood size of
two that is present during that time period. After
trial 100, the neighborhood size shrinks to 1. Also,
during the first 100 trials the degree of “smoothing,”
as determined by «, is at its greatest (see 2.5).

These factors appear to prevent the network from
learning the distinctions necessary to succeed regu-
larly in backing the trailers to the goal. What the
graph does not show, however, is that if the period
during which the neighborhood size is 2 is greatly re-
duced, the system never approaches the level of success
given here. The larger initial neighborhood plays an
important role in forming a generalized representation
of the mapping that can be built upon by later specific
changes.

The steep slope of both graphs starting after trial
100 shows that ROLNNET does in three dimensions
exactly what it was created to do in two. The sys-
tem was designed to rapidly acquire proficiency and
this slope indicates that significant learning occurs on
failure as well as success.

The final region of the graph — the second flat region
—simply shows the ROLNNET system approaching its
maximum proficiency and settling into a stable state.

4 Related work

The trailer-backing problem is gaining attention as
a simple to understand yet difficult to solve learning-
control problem. Approaches such as the Cerebellar
Model Articulated Controller (CMAC) [18], adaptive
fuzzy systems [9, 6], backpropagation through time
[14], “fuzzy BOXES” [20], genetic algorithms [10], and
our own ROLNNET [5] have all been applied to ver-
sions of this problem. It is difficult to directly compare
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Graph of case 1. Average performance for 100 runs of 1000
trials each. Initial position: Rear of second trailer 2 to &
feet from target, all three input angles +/ — 6° each.
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Graph of case 2. Average performance for 100 runs of 1000
trials each. Initial position: Rear of second trailer 8 to 6
feet from target, all three input angles +/ — 5° each.

Figure 3: Results

results across many of these systems and with the re-
sults presented here.

The most obvious difference between this study and
those of other authors writing on this problem, is that
our system is here applied to a rig with a car and two
trailers, whereas all previous work of which we are
aware applies learning systems only to a car with a
single trailer. Other authors have explored the control
of rigs with multiple trailers (e.g. [12]) but these have
not been learning systems.

While backing a rig with a single trailer is still a
nonlinear and unstable problem, it is significantly less
difficult than backing a rig with two trailers. As an
indication of this, note that human truck drivers do
not even attempt to back two-trailer rigs to loading
docks — instead they separate the trailers and back
them each individually as single-trailer rigs.

The additional difficulty in backing a rig with a
second trailer is reflected in differences between the
present work and its immediate predecessor [5] in two
ways. First, the ROLNNET system itself has been ex-
panded. For backing a rig with a single trailer, a two-
dimensional topology was sufficient. For a rig with
two trailers, a three dimensional topology is needed.
With this additional dimension comes an increase in
the number of neural elements needed to maintain the
same grain of partitioning of the input space; for two
dimensions 64 neurons were used but for three dimen-
sions this number jumps to 512. Second, the num-
ber of trials needed to achieve good performance is
increased. In the one-trailer system, maximum per-
formance was reached in 40 to 100 trials, depending
on the case examined. In the two-trailer system, the

cases examined required 400 to 600 trials to approach
their apparent maximum proficiency.

The extension of the ROLNNET topology to three
dimensions is significant from both biological and
practical viewpoints. It is well known that of the
sensory and/or motor maps found in biological neu-
ral networks (brains), many are two-dimensional while
many others are three-dimensional. Any artificial neu-
ral network, then, needs to be extensible to three
dimensions to retain biological plausibility. Further,
since the three-dimensional mappings in the biological
systems are presumably performing useful functions,
this implies that there are many useful functions that
can be captured by similar three-dimensional artificial
neural networks.

Another difference between our work and that of
other authors studying the application of learning sys-
tems to trailer-backing is that ROLNNET was de-
signed for use on a real robot with very limited com-
puting power and memory. While there have in the
last couple of years been an encouraging number of re-
searchers looking at trailer-backing using real robots
(e.g. [15, 19, 11]), these have not been learning sys-
tems. Our decision to apply learning systems to real
robots has ensured that ROLNNET systems are capa-
ble of handling noise and of rapid learning.

Another difference is the formulation of the prob-
lem with regard to information provided to the learn-
ing systems, either by the feedback system or in the
choice of input vectors. Our system is completely un-
supervised and receives only terminal feedback signals
(see Section 1) and, as mentioned above (Section 3),
we provide only the angles of the hitches and to the



goal, not the x and y coordinates, as input.

All of the differences taken in combination make it
clear that simple comparison of success rates between
ROLNNET and other learning systems for trailer-
backing are of no value. Nonetheless, ROLNNET is
seen to learn remarkably quickly even on a very diffi-
cult problem.

5 Future work

While ROLNNET was designed for use on a real
robot, and its learning is extraordinarily fast, we are
still working to decrease the amount of training time
necessary to achieve maximum performance. Our ex-
perience with a ROLNNET system for a rig with a car
and a single trailer indicated that learning on-board a
real robot took approximately the same number of tri-
als as it did in simulation to achieve a similar success
rate. Given the hardware used in the single trailer
experiments, each run of 400 to 600 trials necessary
for the two trailer experiments would take from 1 to
1.5 hours to complete. The time needed to collect a
meaningful number of runs, therefore, is not insignifi-
cant. We are exploring hardware and software options
for decreasing the time needed for each trial as well as
additions to the learning system to reduce the total
number of trials needed.

6 Conclusions

We have described ROLNNET, a paradigm for
learning simple tasks for real robots and we have
presented experimental evidence to support our ap-
proach. The extension of a ROLNNET system to
three dimensions is seen to be significant. Its ap-
plication to a very difficult control-learning problem
and a design that allows it to operate with limited
computing power and feedback set ROLNNET sys-
tems apart from other control-learning systems. The
paradigm is rich with possibilities for further study, in-
cluding novel network architectures and hybridization
with other systems (such as self-learning critics).
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