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Abstract. We present an approach to the bid-evaluation problem in
a system for multi-agent contract negotiation, called MAGNET. The
MAGNET market infrastructure provides support for a variety of types
of transactions, from simple buying and selling of goods and services to
complex multi-agent contract negotiations. In the latter case, MAGNET
is designed to negotiate contracts based on temporal and precedence con-
straints, and includes facilities for dealing with time-based contingencies.
One responsibility of a customer agent in the MAGNET system is to
select an optimal bid combination. We present an efficient anytime algo-
rithm for a customer agent to select bids submitted by supplier agents in
response to a call for bids. Bids might include combinations of subtasks
and might include discounts for combinations. In an experimental study
we explore the behavior of the algorithm based on the interactions of
factors such as bid prices, number of bids, and number of subtasks. The
results of experiments we present show that the algorithm is extremely
efficient even for large number of bids.

1 Introduction

The combination of electronic commerce and autonomous intelligent agents has
the potential to deliver enormous economic benefits. Primitive examples are
already being deployed on the Internet, in the form of automated shopping
agents [8] and auction services [17,26]. More complex economic activities remain
outside the reach of the current generation of automated agents.

The overall research goal of the MAGNET project [6,7] is to develop a seman-
tic model for the integration of planning, contracting, scheduling, and execution
in a multi-agent market domain, such as the Internet. In particular, we are in-
terested in how an agent that has a goal to satisfy can construct a plan, issue a
call for bids to other self-interested agents, award contracts, and monitor their
execution. We call this process Plan Execution by Contracting.

MAGNET includes a market infrastructure and a set of agents that can
make use of this environment to carry out Plan Execution by Contracting activ-
ities. The market infrastructure provides an environment with explicit support
for complex agent interactions. The market acts as a trusted third party to re-
duce opportunities for fraud and misrepresentation. It also manages and enforces



the negotiation protocol between agents, from the negotiation and contracting
phases through the full cycle of contract commitment, execution, and settlement.

All the agents in the MAGNET environment are assumed to be self-interested.
In other words, they exhibit limited rationality in the sense that they will do
what is in their own best interests within the limits of their reasoning capa-
bilities. Agents are also heterogeneous; they are not assumed to have the same
capabilities, nor do they necessarily embody similar decision processes. In gen-
eral, they are motivated to engage in contracting behavior because they do not
have direct access to the resources needed to execute their plans.

The main focus of this paper is a bid-evaluation mechanism for MAGNET
agents. We start by providing an overview of the MAGNET market architecture
and a negotiation protocol for Plan Execution by Contracting, and then proceed
to discuss bid evaluation. Because the evaluation of bids must take into account
plan feasibility as well as cost factors, straightforward auction mechanisms are
inadequate for the MAGNET domain. We describe an anytime bid-evaluation
algorithm that attempts to find the lowest-cost feasible plan, within the limits
of available time and computing resources. Finally, we describe how our work
relates to other efforts in the general area of automated negotiation and con-
tracting.

2 The MAGNET Architecture

The MAGNET architecture is a distributed set of objects that can support elec-
tronic commerce in a variety of domains, from the simple buying and selling of
goods to situations that require complex multi-agent negotiation and contract-
ing. The fundamental elements of this architecture are the exchange, the market,
and the market session, as outlined below.

2.1 The Exchange

An Ezchange is a collection of domain-specific markets in which goods and ser-
vices are traded, along with some generic services required by all markets, such
as verifying identities of participants in a transaction, or a Better Business Bu-
reau that can provide information about the reliability of other agents based on
past performance. Architecturally, an exchange is a network-accessible resource
that supports a set of markets and common services, as depicted in Figure 1.

2.2 Markets

Each Market within an exchange is a forum for commerce in a particular com-
modity or business area. We envision markets devoted to banking, publishing
and printing, construction, transportation, industrial equipment, electronic as-
sembly, etc. Each market includes a set of domain-specific services and facilities,
as shown in Figure 2, and each market draws upon the common services of the
exchange.
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Fig. 1. The Structure of an Exchange. ©1988 by ACM, Inc., appeared in [7]

An important component of each market is a set of current Market Sessions
in which the actual agent interactions occur. Agents participating in a market
may do so as either session initiators, or as clients, or both. As detailed in the
next section, each session is initiated by a single agent for a particular purpose,
and in general multiple agents may join an existing session as clients. Important
elements of the market include:

— An Ontology that is specific to the domain of the market, specifying the
terms of discourse within that domain. In a commodity-oriented domain,
it would include terms for the products or services within the domain, as
well as terminology for quality, quantity, features, terms and conditions of
business, etc. In a planning-oriented domain, specifications of services would
be in a form that supports planning.

— A Protocol Specification that formalizes the types of negotiation supported
within the market. Within a planning-oriented market domain, these spec-
ifications include limits on parameters of the negotiation protocol, such as
the maximum decommitment penalty, whether bids can be awarded before
the bid deadline, etc.

— A Registry of market clients who have expressed interest in doing business in
the market. Entries in this registry would include the identity of a client, a
catalog (or a method for accessing a catalog) of that client’s interests, prod-
ucts or capabilities, which can be used to locate clients to meet requests for
new session participants, and a client agent that is empowered to negotiate
contracts on behalf of the supplier. Client catalogs are required to express
their interests and offerings in terms of the market’s ontology.

2.3 Market Sessions

A Market Session (or simply a session) is the vehicle through which market
services are delivered dynamically to participating agents. It serves as an encap-
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Fig. 2. The Structure of a Market within the Exchange. (©1988 by ACM, Inc., appeared
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sulation for a transaction in the market, as well as a persistent repository for
the current state of the transaction.

We have chosen the term “session” to emphasize the temporally extended
nature of many of these interactions. For example, in a construction-oriented
market, if an agent wishes to build a new house, it initiates a session and is-
sues a call-for-bids. The session extends from the initial call-for-bids through
the negotiation, awards, construction work, paying of bills, and final closing.
In other words, the session encloses the full life of a contract (or possibly a
set of related contracts). The session mechanism ensures continuity of partially-
completed transactions, protects against fraud by verifying the identity of agents,
limits counterspeculation by enforcing negotiation rules, and relieves the partici-
pating agents from having to keep track of detailed negotiation status themselves.

Agents can play two different roles with respect to any session. The agent
who initiates a session is known as the session initiator, while other participating
agents are known as session clients. A session can be initiated either for the
purpose of buying or selling, depending on the type of market. In the above
example of building a house, the initiating agent was the buyer or customer, and
the other participants would be sellers or suppliers, whether they were supplying
materials, labor, advice, credit, or other services. A session could also be initiated
to sell items or services at auction.

At any given time, a session can be open to new participants, or closed.
A public auction would typically be open to new participants, while the house-
building session described above would be closed once the contracts were let. The
market maintains a list of open sessions which may be accessed (and potentially
joined) by participating agents.

Figure 3 shows the structure of a session. Two APIs are exposed, one for the
session initiator and one for session clients.
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Each session contains an Initiator Proxy that implements the Initiator API
and persistently stores the current state of the session from the standpoint of
the initiator.

A Client Proxy is provided for each client that similarly provides a Client
API to the client agent, and persistently stores the current state of the session
from the standpoint of the client. Proxies are market entities that act on behalf
of the agents and enforce market rules.

There are two reasons for the existence of the proxy components. The first
is related to security: client proxy components cannot see the private data of
the initiator or of other clients. The second is that in a distributed system envi-
ronment, the processing and persistent data elements of the initiator and clients
could be instantiated at different locations in the network to maximize perfor-
mance.

3 The MAGNET Protocol

In this section we briefly describe a protocol that supports the Plan Execution by
Contracting model. As outlined in the interaction diagram in 4, the negotiation
portion of the protocol is a finite 3-step process that begins when a customer
agent initiates a session and issues a Call For Bids. This diagram does not deal
with decommitment or settlement.

The Plan Execution by Contracting protocol begins after the session has
been initiated by a customer agent: the customer issues a call-for-bids, suppliers
reply with bids, and the customer accepts the bids it chooses with bid-accept
messages.

Another set of messages, including release, completion, and decommitment,
are used to manage the progress of the plan once bids have been awarded. We
have avoided the need for open-ended negotiation by means of bid break downs
and a time-based decommitment penalty as described below.



Time

3.1

Contractor
Agent

4:{ Contractor formulates plan ‘

Session validates and
records bids; may hold
them until deadline

N

. B
4:{ Contractor evaluates bids ‘

Contractor monitors
plan execution

S

Session closes ;'

transaction

Market
Session

Session looks up
supplier; retrieves

‘r Supplier Agents
Call-for-Bids

‘ Supplier formulates bid h’
. B4

Session validates and
records bid acceptance

——— BdAceptance
Plan Execution
—Z 5

| Delvey

Fig. 4. A Typical Session-Mediated Negotiation

Call for bids

Supplier
Agent

Once the customer has developed a plan of subtasks chosen from the market’s
ontology, it will send a call-for-bids message. The call-for-bids message will in-
clude, for each subtask listed, a time window during which the work must be
done. The call-for-bids message will also include, among other information:

-

a bid deadline, or the time by which the suppliers must respond with bids,
the time at which the customer will begin considering the bids,

the earliest time at which bid acceptances will be sent,

penalty functions for each subtask, which will be assessed against the supplier
if the supplier commits to work, but fails (or decides not) to do it. These
penalty functions are piecewise-linear functions of time that are intended to



encourage suppliers to perform the work they commit to. If a supplier is
unable to perform, the increasing value of the penalty function encourages
it to explicitly decommit as early as possible.

This call-for-bids message, once created, is passed to the market session,
which makes it available to all of the appropriate suppliers (those who are reg-
istered with the market, and are able to perform the necessary tasks.)

In this sense, the call-for-bids message is public, while all of the remaining
messages are private. Before forwarding it, the market session may check the
message to make sure that it conforms to all market and exchange rules which
may exist.

3.2 Bidding

Each supplier will inspect the call-for-bids, and will decide whether or not it
should respond with a bid, according to its resources, time constraints, and
knowledge of the work to be done, according to the catalog of services provided
by the market agent.

If it chooses to respond, it will send a bid message, which will be private (i.e.
other suppliers will not see the contents of the bid). This bid message can include
a combination of subtasks, which must be a subset of the subtasks listed in the
call-for-bids. The content and number of bid messages will be monitored and
may be recorded by the market session, before they are validated and forwarded
to the customer.

In the bid, the supplier must indicate the cost (to the customer), the time
window, and the estimated duration of the work for the whole subtask com-
bination, and this same data for each of the separate subtasks (please see the
explanation for this in the next section). The bid-accept deadline must also be
included, as well as a penalty function for each subtask which the customer will
have to pay if it commits to giving this supplier the work but then decides to
decommit. This penalty function will have the same structure as the supplier
penalty function.

Each supplier can send multiple bids for each call-for-bids, each including
different costs and time windows, but each supplier will be awarded only one bid
combination (or part of one). This is to enable the supplier to send many bids,
but not over commit itself.

This bid is a commitment by the supplier to do work listed in the bid, should
the customer accept it. If the supplier sends no bid message before the customer’s
bid deadline, the customer will assume that the supplier has decided not to send
a bid for this particular call for bids. Thus, rejection is passive.

3.3 Bid acceptance

Having received the bids, the customer must decide which of the bids to ac-
cept, using knowledge about the bids, the task and subtask values, its own time



constraints and the bidder (perhaps provided by the market agent). After com-
pleting this process, the customer must decide to do one of three things for each
bid that it has received:

1. accept the whole bid,
2. accept a subset of the subtasks in the bid, or
3. reject the bid (passive rejection).

The motivation for these choices is to make open-ended negotiation unnec-
essary. If no acceptable set of bids together would cover every subtask to the
satisfaction of the customer, then the customer can avoid negotiation because
it knows how the supplier will break down the costs of the accepted subtasks,
should it become necessary for the customer to accept a subset of the original
bid combination.

This scheme in conjunction with the time-based decommitment penalty func-
tions makes it possible to avoid open-ended negotiation without loss of generality.

The bid-accept message will be sent through the market session, which will
verify, validate and time-stamp it before forwarding it to the customer. Note
that either of the first two choices are commitments to give the supplier the
work and at the point in time that this message is sent (according to the market
session’s time stamp), both the supplier and the customer penalty functions will
be set into effect.

A failure to send a bid-accept message means the customer is rejecting the
supplier’s bid.

Once commitments have been made, an agent may determine that it cannot
do the tasks it has committed to, or that it would disadvantageous to do so.
In these situations, the agent must send a decommitment message to the other
agent, describing what parts of its commitment it will not be satisfying. Included
in the decommitment messages will be an acknowledgment of the penalty that
the agent will be paying as a result of the decommitment.

3.4 Release

As the plan progresses, Release messages are used to inform supplier agents
that they may begin work on portions of the plan for which they have been
awarded bids. Failure to release prior to the suppliers latest start time constitutes
decommitment on the part of the customer, and a penalty will be assessed by
the Session.

3.5 Decommitment

Once bids are awarded, either party may choose to decommit and pay a penalty.
The ability to decommit makes this a “leveled commitment” protocol. This
is a requirement in many real-world contracting domains, and Sandholm and
Lesser [21] have shown that the ability to decommit permits agreements to be
reached in situations where no agreement would otherwise be possible.
Decommitment is only valid prior to delivery, and the penalty is not dis-
counted in the case where a discounted multi-element bid was awarded.



3.6 Delivery and acceptance

The protocol is completed with messages that signify delivery by the supplier and
acceptance of delivery by the customer. Failure to deliver prior to the deadline
agreed to in the bid constitutes supplier decommitment, and the supplier will
be assessed the decommitment penalty by the Session. For present purposes, we
will assume that settlement is outside the scope of the system.

4 An Algorithm for Bid Evaluation

In this section we consider the specific problem of evaluating bids in a Plan Ex-
ecution by Contracting situation. In general it is not enough to merely compare
prices, because the set of bids accepted must constitute a complete and feasible
plan. We have chosen a local improvement search [22,27] over a constructive
search for three reasons:

— There is a straightforward mechanism for constructing a baseline feasible
solution.

— The time-dependent nature of the negotiation protocol requires that the
search be completed within a fixed period of time. Boddy and Dean [3] have
characterized this type of search as an anytime search. In [2], Boddy has
further characterized the requirements for anytime problem solving using
performance profiles.

— Since the search space for this problem is well-structured, a systematic,
domain-specific search algorithm such as the one we propose here appears
more suited than the generic methods described in [16].

We consider a typical contracting situation in which the customer’s call-
for-bids is comprised of a group of subtasks. We use bid break-downs to avoid
open-ended negotiation among agents, but for simplicity, we do not consider
temporal factors such as bid deadlines or time-based decommitment penalties.
Accordingly, a bid by a supplier is a subset of these subtasks with an associated
cost or price for the whole bid.

In addition, each bid includes a cost for individual subtasks that make up the
bid. The bid cost may represent a discount over the sum of the costs of individual
subtasks contained in the bid. To satisfy a subtask the customer agent has the
option of choosing the whole bid from a given supplier, or selecting individual
bid elements from various suppliers.

A typical contracting situation is depicted in Figure 5, where the customer
agent has issued a call-for-bids comprised of four subtasks Si,S3,S3, and Sy.
Suppliers have submitted 3 bids, each containing a subset of these subtasks.
Finally, the customer, after evaluating the bids, has accepted parts of bids 1 and
3 and all of bid 2. In this case, the customer would pay the full price for subtasks
S1 and Sy as specified by bids 1 and 4, respectively. However, subtasks Ss and
S3 may have been obtained at a discount price since the customer has accepted
the complete bid.
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We now present our bid selection algorithm. The goal is to find the best
combination of bids and parts of bids (selecting only some of the subtasks from
a bid, and ignoring the discount) to cover the entire set of subtasks specified by
the call-for-bids.

The algorithm has two phases. First, we build an initial solution from the best
individual subtask prices. If there are no bids for one or more of the subtasks, no
initial solution can be constructed and the algorithm terminates. If a solution
exists, we try to improve the initial solution by applying discounts from the
various bids. Because each bid represents a single discount, we conduct our
search by bid, not by subtask.

Each solution is represented by a node in a list of feasible solutions. We start
the list by creating an initial solution, storing it in what we call the origin node,
and placing the origin node in the feasible solution list.

Each node, which represents a solution to the problem, includes a list of
subtasks, the price of each subtask, which bid is covering each subtask, whether
each subtask is part of a discount (false for all subtasks in the origin node), and
the total discount amount (zero in the origin node).

In the algorithm, we use the notation node.bidID[i] to indicate the bid
identifier of subtask i in the node node, node.price[i] to indicate the price
of subtask i, node.discount?[i] to indicate if subtask 4 is part of a discount.
node.Total Discount indicates the total discount, node.Discounted Price the dis-
counted price, and node.Total Price the total price of the solution. We will use
a similar notation to indicate the components of a bid.



/* initialize origin node */

create origin node;

origin.Total Discount < 0;

for each subtask € SetofTasks do
origin.bidI D[subtask] «+ unassigned
origin.price[subtask] < oo
origin.discount?|[subtask] «+ false

/* construct an initial solution (if one exists) */
for each bid € Setof Bids do
for each subtask covered in bid do
if  origin.bidl D[subtask] = unassigned
or bid.price[subtask] < origin.price[subtask]
then origin.price[subtask] < bid.price[subtask]
origin.bidI D[subtask] < bid.bidI D[subtask]
solution? < true
for each subtask € SetofTasks do
if origin.bidI D[subtask] = unassigned then solution? < false
if solution? = false then exit /* no solution exists */
add origin to SolutionList /* a solution exists */

/* improve the initial solution by applying one or more discounts */
for each bid € Setof Bids do
for each node in SolutionList do
discounted? < false
for each subtask covered in bid do
if node.discount?|[subtask] = true then discounted? < true
if  discounted? = false
/* there is no subtask overlap for the discounts */
then create a new node current
for each subtask in bid do
current.price[subtask)] « bid.price[subtask]
current.bidl D[subtask] < bid.bidI D[subtask]
current.discount?[subtask] < true
current.Total Discount < node.Total Discount + bid.discount
current.Total Price < 3 viaskeSetof Tasks CUTTENE.price[subtask]
current.Discounted Price <
current.Total Price — current.Total Discount
if  current.DiscountedPrice < node.DiscountedPrice
then add current to TemporaryList
else discard it
add the nodes from TemporaryList to SolutionList
sort SolutionList in decreasing order by DiscountedPrice
the first node in SolutionList is the best solution



Let us now consider a detailed example of this procedure. In this example,
we consider a call-for-bids on four subtasks. Suppose that, in response to the
call-for-bids, three bids are received by the customer agent:

1. Bid 1 covers subtasks 1, 3 and 4 for 130 units with subtask 1 at 50 units,
subtask 3 at 50 units and subtask 4 at 45 units (15 units discount).

2. Bid 2 covers subtasks 2 and 3 for 95 units with subtask 2 at 60 units and
subtask 3 at 70 units (35 units discount).

3. Bid 3 covers subtasks 1 and 4 for 95 units with subtask 1 at 75 units and
subtask 4 at 40 units (20 units discount).

The origin node is formed by taking the smallest individual price for each
subtask, thus:

Origin Parent Node: None
subtask bidID price discount?

1 1 50 false

2 2 60 false

3 1 50 false

4 3 40 false
total price: 200
total discount: 0
discounted price: 200

We now try to form a child node for each node in the list using the Bid 1
discount. Since there is only one node in the list, and none of its subtasks are
marked as discounted, we make a child node:

Node 1 Parent Node: Origin
subtask bidID price discount?

1 1 50 true

2 2 60 false

3 1 50 true

4 1 45 true
total price: 205
total discount: 15
discounted price: 190

Since the discounted price is indeed less than the discounted price of its
parent, we add this node to the list. We now try to create children using the Bid
2 discount. From the Origin Node we can make a child:



Node 2 Parent Node: Origin
subtask bidID price discount?

1 1 50 false

2 2 60 true

3 2 70 true

4 3 40 false
total price: 220
total discount: 35

discounted price: 185

Since the discounted price is less than the discounted price of its parent, we
add this node to the list. We cannot, however, make a child node from Node 1
(because there is a discount overlap on subtask 3).

We now move on to Bid 3. We can make a node from the Origin Node:

Node 3 Parent Node: Origin
subtask bidID price discount?

1 3 75 true

2 2 60 false

3 1 50 false

4 3 40 true
total price: 225
total discount: 20

discounted price: 205

This node is not added to the list. Its discounted price is actually above the
price of its parent (in this case the origin node).

We cannot make a child from Node 1 using Bid 3 because of the overlap on
subtasks 1 and 4. We can, however, make a child of Node 2:

Node 4 Parent Node: Node 2
subtask bidID price  discount?
1 3 75 true
2 2 60 true
3 2 70 true
4 3 40 true
total price: 245
total discount: 55

discounted price: 190

This node is not added to the list, because though it is cheaper than the
Origin Node, it is not cheaper than its parent node (Node 2).



There are now a total of three nodes in the list, and the cheapest price can be
found in Node 2. Though that node contains higher subtask prices than the origin
node, it contains enough discount to make it the least expensive combination.

The number of nodes created by this algorithm is highly dependent on the
interaction between the number of bids, subtasks, price variation, and discount.
We shall examine the results of some of these interactions in the next section.

Our algorithm conducts a systematic search on a finite space, so the algorithm
is complete. It finds the optimal solution because it creates all non-conflicting
discount combinations. Combinations which are not considered as solutions are
rejected because they increase the total price. Since the algorithm starts with
a solution and only combinations that decrease the price are considered, the
algorithm has an anytime behavior. The algorithm can be terminated any time
and will return the best solution found so far. Given additional time, it will
produce a better solution, if one is available.

5 Experimental Evaluation

In order to observe the behavior of this algorithm under different circumstances,
we constructed a set of experiments using the following parameters:

— The number of subtasks in the call-for-bids. We tried 10, 20 or 30 subtasks.

— The number of bids (suppliers). We tried 10, 20, or 30 suppliers.

— The mean percentage of subtasks that suppliers will include in their bids.
This percentage was fixed at 30% for one set of experiments, and was varied
randomly within the 10 to 60% range, for another set of experiments.

— The price range that suppliers can bid for each subtask. We tried allowing
the price to vary widely (10-100) or narrowly (80-100).

— The percentage discount that suppliers will offer in their bids. This was
picked with a uniform distribution within the range 0-40%.

All of the subtasks were considered to be of equal importance and were
bid by the suppliers up to a price of 100 units each. Subtask ordering and other
temporal considerations were ignored. For each experiment, ten different bid sets
were produced with the same parameters, and the number of nodes examined
to complete the search was computed.

Figures 6 and 7 illustrate the results for these experiments. Figure 6 shows
the results for two sets of experiments, one in which the percentage of subtasks
per bid was fixed at 30% and another with the percentage varying in the range
of 11-60%. In both cases, the bid prices varied from 10 to 100 units. Figure 7
shows the results of another two sets of experiments using the same subtask
percentage parameters, but using a bid price range of 80-100 units.

Comparing Figures 6 and 7, we can see that when pricing is allowed to
fluctuate widely, the number of nodes searched decreases as the number of bids
increases. When prices are constrained in their range, however, the number of
nodes increases as the number of bids increases. This is due to the fact that, in the
unconstrained scenario, there is an increased chance of bids being overpriced with
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respect to the lowest price, even when considering their discount. This, in turn,
results in an increase in the number of nodes discarded. In a typical contracting
situation we should expect the price range not to have a large variance. Therefore
it would be desirable for the customer agent to receive fewer bids, as illustrated
in Figure 7.

When the subtask percentage (the percentage of subtasks that can appear in
a bid) is allowed to vary up to sixty percent, some of the bid sets have a large
number of subtasks, which causes the number of nodes searched to decrease
as the number of subtasks increases. In general, the larger is the percentage of
subtasks in each bid, the better the algorithm performs. At one extreme, if no
bid contains multiple subtasks only one node is expanded. At the other extreme,
if each bid includes all the subtasks, the algorithm is linear in the number of
bids.

In Figure 8 we compared the performance of this algorithm with a standard
A* algorithm, using a minimum cost heuristic. As the figure shows, the number
of nodes expanded by A* grows very rapidly. A comparison with other branch
and bound algorithms [10] is planned for the near future.

No. of |No. of| A" Anytime
Subtasks| Bids Algorithm
4 4 137 2.6
4 6 350 2.3
4 8 695 1.8
6 4 659 2.7
6 6 3682 2.1
6 8 7367 1.9
7 4 4830 2.3
7 6 22104 1.5

Fig. 8. Number of nodes expanded by A* and by the anytime algorithm for a variety
of problems. For all the experiments the price range is between 10 and 100 units, the
percentage of subtasks each suppliers includes in the bids is between 30% and 80%.
The table shows the average number of nodes expanded in 10 runs for each experiment.

From these results we can see that the interesting parameters to explore
should be when the percentage of subtasks that can appear in a bid is small
and both prices and discounts are kept in a reasonable range. Under these con-
ditions, the space searched can become very large with larger numbers of bids
and subtasks. In order to use the anytime property of this algorithm, it may
become useful to sort the bids (and thus guide the search space) by the percent-
age discount given. When the algorithm is interrupted, it will have already tried
to apply the better discounts, and so should produce a cheaper solution than
looking at the bids in a random order.



In a further experiment, we limited the prices and discounts to a reasonable
range. The prices were kept between 80% and 100% of the highest price, and
discounts were allowed only up to 30% of the total price of a bid. Further, the
subtask percentage was kept at 10%. We then looked at the effect of varying the
number of bidders from 20 to 45 and the number of subtasks from 20 to 45.

The following table shows the results of our experiments. Each cell shows the
mean number of nodes expanded for trials in which a feasible solution existed.
Ten trials were attempted for each cell. Assuming that decisions to bid on in-
dividual subtasks are independent events, the probability that all subtasks will
be bid on by at least one bidder is P = (1 — (1 — p)™)™, where m is the number
of bidders, n is the number of subtasks, and p is the probability that a bidder
will bid on a subtask. It should be noted that the variance in these numbers is
rather high; typically, o > 0.6X.

Bidders|| 20 | 25 30 35 40 45

Subtasks
20 364| 1352| 8125| 27591| 72465| 201827
25 2190| 6827| 15384 | 34064| 66510| 88380
30 1366 3271| 19244| 45595| 85348
35 2767| 9613| 21659| 31409 55318
40 4088| 7493| 21257| 34133
45 4445 7167| 16136 32795

Fig. 9. Number of nodes expanded by the anytime algorithm for a price range between
80 and 100 units, the probability of a subtask being included in a bid is 10%. Empty
cells had no instances of full subtask coverage in 10 runs.

Under these conditions, it appears as though the number of nodes searched
increases exponentially with the number of bidders when the number of sub-
tasks is kept constant, approximately doubling with every five bidders added.
The number of nodes searched decreases, however, as the number of subtasks
increases for a constant number of bidders, which also increases the probability
that some subtasks will be included in only one or a very small number of bids.

There are two ways this information could be used by a customer agent in
the MAGNET system: before the Call For Bids is issued, and after bids are
received:

— if a customer agent has a priori knowledge of the likely number of bidders and
the bid density (expected number of subtasks per bid), then the structure of
the Call For Bids could be manipulated to both increase the probability of
achieving plan coverage, and to reduce the search effort. Such manipulation
could be done by choosing plan expansions with more or fewer elements,
or with different levels of hierarchical breakdown. The necessary a priori



knowledge could be gathered by the Market as contracting activity proceeds
under its jurisdiction;

— after bids are received, a simple measure of the bid density and degree of
overlap could be used to estimate the required search effort. If the predicted
effort was greater than the available time, then a different search strategy,
such as simulated annealing, might be chosen in order to achieve broad
coverage of the search space, while sacrificing detailed examination.

6 Related Work

In recent years, a variety of architectures have been proposed for electronic
commerce and multi-agent automated contracting [4,9,13,15,17,24,25].

In addition to the work on virtual market architectures, several protocols have
been developed and proposed that support automated contracting and negoti-
ation among multiple agents in such markets [11,18-20]. Automated contract-
ing protocols generally assume direct agent-to-agent negotiation. For example,
Smith [23] pioneered research in communication among cooperating distributed
agents with the Contract Net protocol. The Contract Net has been extended by
Sandholm and Lesser [19] to self-interested agents.

In these systems, agents communicate and negotiate directly with each other.
On the other hand, in the MAGNET system [7], the proposed architecture and
the associated protocol for automated contracting utilize an external and inde-
pendent market infrastructure to reduce fraud and counterspeculation among
self-interested agents. In contrast to Sandholm’s protocol [20], MAGNET avoids
the need for open-ended negotiation by means of bid break-downs and time-based
decommitment penalties, as described more in detail in [6].

A primary motivation behind the design of our proposed protocol and mar-
ket framework is to support automated contracting. This sort of problem is
often found in public contracting and it is useful, in general, in multi-enterprise
manufacturing.

Existing architectures are generally designed for the kind of commercial ac-
tivity that involves buying and selling of physical or electronic goods over a
distributed electronic environment such as the Internet. They do not explic-
itly support more complex interactions such as those in a contracting domain
where customer agents formulate plans and use the negotiation process to gain
commitment from multiple supplier agents for the execution of these plans.

To the extent that we require the existence of an external market mechanism
as an intermediary, our proposed framework is similar to that of Wellman’s
market-oriented programming used in AuctionBot [26]. AuctionBot supports
a variety of auction types each imposing a set of market rules on the agent
interactions. Hence, the auctions, themselves, become the intermediaries. The
entity that sets up the auction can specify certain parameters for the auctions.
In contrast, our framework provides explicit market mechanisms which can not
only specify and enforce auction parameters, but also support more complex
interactions. Furthermore, these market mechanisms also enforce general market



rules and “social laws”, such as government regulations, by which all participants
must abide. Rosenschein and Zlotkin [18] showed how the behavior of the agents
can be influenced by the set of rules that the system designers choose for the
agents’ environment,.

In Rosenschein and Zlotkin’ study [18] the agents are homogeneous, and the
assumption is that there are no side payments. In other words, the goal is to
share the work, not to pay for work. Sandholm’s agents [19,20,1] redistribute
work among themselves by a contracting mechanism. Unlike Rosenschein and
Zlotkin, Sandholm considers agreements involving explicit payments.

7 Conclusions and Future Work

In this paper we have presented an overview of the MAGNET automated con-
tracting system, and preliminary results of our work in developing an anytime
algorithm that can choose the best combination of bids in real time on a reason-
ably sized problem. Our proposed algorithm has been developed as part of the
MAGNET contracting market framework [7]. It compares favorably with algo-
rithms that build solutions (for example, a constructive A* search of the subtask
space).

Our experimental evaluation suggests that the algorithm searches very ef-
ficiently and expands a small number of nodes before producing the optimal
solution. The algorithm can be interrupted at any time and will return the best
solution found so far. Our results also affirm the common sense notion that there
is a tradeoff between cost of computation and opportunity for optimization.

It has been observed that there is often a form of phase transition situa-
tion that separates easy from hard problems [5]. This observation has produced
significant results in the context of propositional satisfiability (SAT) problems
(see, for instance, [14,12]. It would be worthwhile to explore if specific heuristics
adapt better to either of these extremes, and to study the effect of alternative
pruning tactics on hard problems in the domain we have described here.

There are extensions to this algorithm that we are considering. First, we
plan on including other factors in the cost of bids, such as the reliability of
the supplier, or the desirability of the customer to deal with a specific supplier,
Second, we plan on extending the algorithm to include time considerations in
addition to price. The best bid could be the one that accomplishes the task at
the most appropriate time for the customer, not the one that has the lowest
price.
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