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ABSTRACT

In related research we have proposed a market architecture
for multi-agent contracting and we have implemented pro-
totypes of both the market architecture and the agents in
a system called MAGNET. A customer agent in MAGNET
solicits bids for the execution of multi-step plans, in which
tasks have precedence and time constraints, by posting a
Request for Quotes to the market. The Request for Quotes
needs to include for each task its precedence constraints and
a time window. In this paper, we study the problem of op-
timizing the time windows in the Requests for Quotes. Our
approach is to use expected utility theory to reduce the like-
lihood of receiving unattractive bids, while maximizing the
number of bids that are likely to be included in the win-
ning bundle. We describe the model, illustrate its operation
and properties, and discuss what assumptions on the mar-
ket structure are required for its successful integration into
MAGNET or other multi-agent contracting systems.

Categories and Subject Descriptors

K.4.4 [Computers and Society]: E-commerce; 1.2.11 [Ar-
tificial Intelligence]: Distributed Artificial Intelligence

General Terms

Algorithms, Economics, Theory
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The MAGNET (Multi-AGent NEgotiation Testbed) [5]
system is designed to support multiple agents in negotiat-
ing contracts for tasks with temporal and precedence con-
straints. We distinguish between two agent roles, the Cus-
tomer and the Supplier. A Customer is an agent who needs
resources outside its direct control in order to carry out his
plans. A Supplier is an agent who, in response to a Request
for Quotes (RFQ), may offer to provide the requested re-
sources or services for specified prices, over specified time
periods.

In this paper, we focus on the decision process a customer
agent needs to go through in order to generate an RFQ.
We study in particular the problem of how to specify in the
RFQ the time windows for the different tasks. This decision
determines an approximate schedule by setting limits on the
start and end times for each individual task, since the RFQ
includes early start and late finish times for each task.

Choosing appropriate time windows affects the number
and price of the bids received, the ability to compose the
bids into a feasible schedule, and the financial exposure of
the customer agent. There are two major decisions here:
the relative allocation of time among the different tasks in
the plan, and the extent to which the time windows of adja-
cent tasks (connected by precedence relations) are allowed
to overlap.

There is a tension between issuing an RFQ that will solicit
the maximum number of bids and reduce costs, and one that
will guarantee the feasibility of any plan constructed with
the resulting bids [4]. We assume that suppliers will bid de-
pending of their current resource commitments, and there-
fore larger time windows will result in more bids and better
utilization of resources, which will result in lower prices.
However, an RFQ with overlapping time windows will make
the process of winner determination much more complex [3].

An additional factor to be considered is the financial ex-
posure of the customer agent [2]. We assume non-refundable
deposits are paid to secure awarded bids, and payments for
each task are made as the tasks are completed. The pay-
off for the customer agent occurs only at the completion of
the plan. Once a task starts and, in case it is successfully
completed in the time period specified by the contract, the
customer is liable for its full cost, regardless of whether in
the meantime the plan as a whole has been abandoned due
to a failure on some other branch of the plan.

We define successful plan execution as “completed by the
deadline,” and we define successful completion of a task as



“completed without violating temporal constraints in the
plan.” Note that a task can be completed successfully even
if it is not finished within the duration promised by the
bidder, as long as the schedule has sufficient slack to absorb
the overrun. If a plan is completed after its deadline, it has
failed, and we ignore any residual value to the customer of
the work completed.

The uncertainty of whether the tasks will be completed
on time as promised by suppliers further complicates the
decision process. Because of the temporal constraints be-
tween tasks, failure to accomplish a task does not necessar-
ily mean failure of the goal. Recovery might be possible,
provided that whenever a supplier fails to perform or de-
commits there are other suppliers willing to do the task and
there is sufficient time to recover without invalidating the
rest of the schedule.

If a task is not completed by the supplier, the customer
agent is not liable for its cost, but this failure can have a
devastating effect of other parts of the plan. Having slack
in the schedule increases the probability that tasks will be
completed successfully or that there will be enough time to
recover if one of the tasks fails. However, slack extends the
completion time and so reduces the payoff. In made-to-order
products speed is the essence and taking extra time might
prevent a supplier from getting a contract. This complicates
the selection of which bids to accept. The lowest cost com-
bination of bids and the tightest schedule achievable is not
necessarily the preferable schedule because it is more likely
to be brittle.

Risk can also be reduced by consolidating tasks with fewer
suppliers. Suppliers can bid on “packages” composed of sub-
sets of tasks from the RFQ. In general, the customer is better
off from a risk standpoint if it takes these packages, assuming
that the supplier is willing to be paid for the whole package
at the time of its completion. In some cases, the customer
may be willing to pay a premium over the individual task
prices in order to reduce risk. The advantage of doing this is
greater toward the end of the plan than near the beginning,
since at that point the customer has already paid a signifi-
cant part of the tasks. Having a greater financial exposure
provides an additional incentive to reduce risk.

In our previous work on Expected Utility [2] we were
mostly concerned with computing the marginal expected
utility of completing successfully all the tasks within the
duration promised. In this paper, we show how to use Ex-
pected Utility Theory to determine the time windows for
tasks in the task network, so that bids that are close to these
time windows form the most preferred risk-payoff combina-
tions for the customer agent. We further examine to what
extent the behavior of the model corresponds to our expecta-
tions, explain what market information needs to be collected
in order to integrate the model in MAGNET system and, fi-
nally, discuss how to use the resulting time allocations to
construct RFQs.

2. THE MAGNET FRAMEWORK
2.1 General Terms

The customer is a human or artificial agent who wants
to achieve some goal and needs resources or services beyond
her direct control.

The supplier is a human or artificial agent who has direct
control over some resources or services and may offer to pro-

vide those in response to external request, i.e., may submit
and commit to bids.

The mediator is a MAGNET-assisted human agent who
meets the needs of a consumer by negotiating over multiple
goods or services with one or more suppliers. We often refer
to the artificial part of the duo as to the customer agent.

The Request for Quotes is a signal composed by the cus-
tomer agent on the basic of the customer’s needs and is sent
to solicit suppliers’ bids. MAGNET is a mixed initiative
system, so between composing RFQs and sending them out,
there is a stage where a human user can impose her prefer-
ences on the RF(Q choices.

The task network (see Figure 1) represents the structure
of the consumer’s plan. In essence, it is a connected directed

acyclic graph.
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Figure 1: A task network example.

2.2 Task Network

Mathematically speaking, the task network is a tuple (IV, <)
of a set IV of individual tasks and strict partial ordering on
them. We conveniently abuse N to also denote the number
of tasks.

We define P (n) := {m € N|m < n} to be a set of pre-
decessors of n € N, where every predecessor m should be
completed before task n might start. Note that, in general,
P (n) is not completely ordered by <. We also define P; (n)
to be a set of immediate predecessors of n.

Similarly, S (n) and S1 (n) are to denote a set of successors
and a set of immediate successors of the task n respectively.

2.3 Time Allocation and Probabilities

The task network is characterized by a start time t° and a
finish time t/. No individual task can be scheduled outside
the interval [¢°,¢7].

The placement of an individual task n on a schedule is, in
turn, bounded by the following three parameters:

1. Early start time t;; > t°, the task n cannot start earlier
than that.

2. Late start time ' > ¢, the task n cannot start later
than that.

3. Late finish time ¢t > ¢*  the task cannot finish later
than that. Note, we assume no lower bound on the
task finish time other than its actual start time, i.e. a
supplier is free to work as fast as she wishes).

The actual placement of task n in the schedule is charac-
terized by start time t5, and finish time tf,, where

th >t >t° VYm € P (n)
<t <t  VmeS (n)



The probability of task n completion by the time ¢, condi-
tional on the successful task n completion, is distributed
according to the cumulative distribution function (CDF)
®, = @, (t,;t), ®n (-;00) = 1. There is an associated un-
conditional probability of success pn € [0,1] that character-
izes the percentage of tasks that are successfully completed
given infinite time.

Figure 2: Unconditional distribution for successful
completion probability.

2.4 Payoffs

Task n bears an associated cost. We split the total cost of
task n in two parts: one is paid at time 0 and sums over n to
co, the other is ¢, and is due at some time after successful
completion of n. We assume ¢y = 0 for the rest of the paper,
since we never compare two plans with different co’s.

There is a single final payoff V scheduled at the plan
finish time ¢' and paid conditional on all tasks in n being
successfully completed by that time.

There is an associated rate of return ¢, that is used to
calculate the discounted present value (PV) for payoff ¢, due
at time ¢ as

PV (cnit) i=cn (14+¢q2)"".

We associate the return ¢ with the final payoff V.

3. EXPECTED UTILITY
3.1 General Terms

The consumer agent’s preferences are represented by a von
Neumann-Morgenstern utility function u with constant ab-
solute risk-aversion (CARA) coefficient r, where r := u" /u’.
Thus, the ezpected utility [12] (EU) Eu[-] over the set of pay-
off-probability pairs, also referred as a gamble, G = {(x@,pl)l}
st. pi>0,Viand ), pi =11is

> piul@)

(z4,0:)EG

= — Z piexp {—rz;}.

(zi,pi)€EG

Eu[G] :=

To make intuitive sense of the maximization criterion, we
introduce the certainty equivalent (CE) of a gamble G as

CE[G] = u 'Eu[G]
= _TllogEu[G]

One may think of a certainty equivalent as a payoff that
is equally valuable as the corresponding gamble G for an

!The reason for having multiple ¢,’s is that individual tasks
can be financed from different sources, thus affecting task
scheduling.

agent with risk-aversity r. Naturally, the agent will not be
willing to accept gambles with less than positive certainty
equivalent and the higher values of the certainty equivalent
will correspond to more attractive gambles.

To illustrate the concept, Figure 3 shows how the cer-
tainty equivalent depends on the risk-aversity of an agent.
In this figure we consider a sample gamble that brings the
agent either 100 or nothing with equal probabilities. Agents
with positive r’s are risk-averse, with negative — risk-loving.
Note that agents with risk-aversity close to zero, i.e. almost
risk-neutral®, value G equal to its weighted mean 50,

100 T T
max CE({(100,1/2),(0,1/2)})
75+t :
BOF- - Y .......................
25¢
0 : : : r
-0.1 -0.05 0 0.05 0.1

Figure 3: Certainty equivalent of a simple gamble
as a function of the risk-aversity.

3.2 Cumulative Probabilities

To find the actual form of EU in our setup, we must
be able to describe gambles that result from different task
scheduling.

We assume that a payoff ¢, is scheduled at tf, so its
present value &,> is

~ —¢f
Cni=cn (14+¢gn) ™

We define the conditional probability of task n success as
B = pa®a (£511,)
We also define a set of precursors of task n as
P(n) = {m e NJtt, < tz}.

These are the tasks that were finished before task n had a
chance to start.

The unconditional probability that the task n will be com-
pleted successfully is

Prn=pnx [] Bm
meP(n)

That is, the probability of successful completion of every
precursor and of the task n itself are considered independent
events. The reason this is calculated in such form is because,
if any task in P (n) fails to be completed, there is no need
to execute task n.

%In the case of r = 0, the utility function takes the form of
a straight line with a positive slope.

3Hereafter we “wiggle” variables that depend on the current
task schedule, while omitting all corresponding indices for
the sake of simplicity.



The probability of receiving the final payment V is there-

fore
7= 1] bn

neN

3.3 Example and Discussion

To illustrate the definitions and assumptions above, let’s
return to the task network in Figure 1 and consider a sam-
ple task schedule in Figure 4. In this figure the z-axis is the
time in the plan, the y-axis shows both the task numbers and
for each individual task it also shows the cumulative distri-
bution of the unconditional probability of completion in the
scale from 0 to 1 (compare to Figure 2). Circle markers show
start times ¢, crosses — both finish times ¢, and success
probabilities p, (numbers next to each point). Square mark-
ers denote that the corresponding task cannot span past this
point due to precedence constraints. Finally, the thick part
of each CDF shows the time allocation for this task.
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Figure 4: CE maximizing time allocations for the
plan in Figure 1 for r = —0.01.

In practice, the consumer agent needs a way of collect-
ing the market information necessary to build and use the
model. The reason why we introduced the cumulative prob-
ability of success @, and probability of success p,, instead
of the average project life span or probability of failure or
alike, is because the probability of success is relatively easy
to observe in the market.

To be specific, the information that the agent needs to
collect is the empirical distribution of how long does it take
from the point of starting some task to the point its com-
pletion is reported. This data, unlike the data on failures or
actual positions in the supplier’s schedule is less likely to be
private or unobservable.

For example, it would be easy for a person sitting in a
Chinese restaurant to determine p,’s and ®,’s for various
dishes. The time between ordering and receiving the dish
is easily observable. The customer does not need to worry
about obtaining detailed (and private) information such as
the exact cooking time or the number of times the cook
made a mistake and started over.

4. MAXIMIZATION
4.1 Gamble Calculation Algorithm

At this point we built up enough instruments to express
the expected utility function form for a given task network
and schedule. In the course of the research we found that
writing a formal description of the expected utility as a func-
tion of gambles is overly complicated and relies on the order
of task completions. At the same time, we found a simple
recursive algorithm that creates these gambles. This algo-
rithm is shown in Figure 5.

Procedure: G  calcGamble(T, D)
Require: T “tasks to process” V D “processed tasks”
Ensure: G “subtree gamble”

for alln € T do
if P(n) C D then
G+ o
T+ T\ {n}
E + calcGamble(T, D) “follow ... — 7 path”
for all (z,p) € E do
G« GU{(z,px (1 =5n)})
end for
I < calcGamble(T, DU {n}) “follow ... — n path”
for all (z,p) € I do
G+ GU{(x+én,pxpn)}
end for
Return: G “subtree processed”
end if
end for
“only reach to here if in the leaf”
if N =D then
Return: {(V,1)} “all done”
else
Return: {(0,1)} “failure”
end if

Figure 5: The algorithm for gamble calculation.

In the first call the algorithm receives a “todo” task list
T = N and a “done” task list D = @, all the subsequent calls
are recursive. To illustrate the idea behind this algorithm,
let’s refer to the payoff-probability tree in Figure 7. This tree
was built for the time allocations in Figure 6 and reflects the
precursor relations for this case.

Looking at the time allocation figure, we note that with
probability 1 — p1 task 1 fails, the consumer agent does not
pay or receive anything and stops the plan execution (path
1 in the tree). With probability 5§ = p1 the agent proceeds
with task 3 (path 1 in the tree). In turn, task 3 either fails
with probability p1 x (1—p3), in which case the agent ends up
stopping the plan and paying a total of ¢1 (path 1 — 3), or it
is completed with the corresponding probability p3 = p1 X ps.

In the case where both 1 and 3 are completed, the agent
starts both 2 and 4 in parallel and becomes liable for paying
c2 and c4 respectively even if the other task fails (paths
1—+3—>2—>4and1 — 3 — 2 — 4). We will stop at
this point with the final observation, that, if both 2 and 4
fail, the resulting path in the tree is 1 — 3 — 2 — 4 and
the corresponding payoff-probability pair is framed in the
figure.



Figure 6: CE maximizing time allocations for the
plan in Figure 1 for r = 0.02.
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Figure 7: Payoff-probability tree for the time allo-
cations in Figure 6.

4.2 Experimental Results

We have conducted a series of experiments on the CE
maximization. Some of the results are summarized in Fig-
ure 8. In this figure, the y-axis shows 11 different risk-
aversity r settings, the bottom z-axis — time ¢ in the plan,
and the top z-axis — maximum CE value for each r setting.
The rounded horizontal bars in each of 11 sections denote
time allocations for each of six tasks with task 1 being on
top. Sections r = —0.01 and r» = 0.02 correspond to Fig-
ure 4 and Figure 6 respectively. Finally, the vertical bars
show the maximum CE values.

Let’s examine the relative placement of time allocations
as a function of r. For this purpose we highlighted task 3
(black bars) and task 4 (white bars). Here task 3 has higher
variance of CDF and lower probability of success than task
4 (0.032 and 0.95 vs. 0.026 and 0.98), also task 3 is more
expensive (—15 vs. —7). There are four different cases in

the experimental data:

1. Risk-loving agents schedule tasks in parallel in order
to maximize their final payoff. This confirms the in-
tuition that we derive from Figure 3 — risk-lovers lean
toward high risky payoffs rather than toward low cer-
tain payoffs.

2. Risk neutral and low risk-averse agents place risky task
3 first to make sure that the failure doesn’t happen
too far in the project. Note, that they still keep task
2 running in parallel, so, in case 2 fails, they are liable
for paying the supplier of task 4 on success. One can
consider those agents as somewhat optimistic.

3. Moderately risk-averse agents try to dodge the situa-
tion above by scheduling task 3 after task 2 is finished.
These agents are willing to accept the plan, but their
expectations are quite pessimistic.

4. Highly risk-averse agents shrink task 1 interval to zero,
thus “cheating” to avoid covering any costs. One may
interpret this as a way of signaling a refusal of accept-
ing the plan.

5. ISSUESAND FUTURE RESEARCH
5.1 MultipleLocal Maxima

One of the issues that arise from the CE maximization
problem is the presence of multiple local maxima even in
cases where task networks are fairly simple. The reason for
this is that the relative task placement has two preferred
configurations: independent individual tasks can be either
performed in parallel (thus increasing probability of success-
ful completion) or they can be scheduled in sequence to min-
imize overall payments, in case one of tasks fails.

To illustrate the issue, we constructed a sample task net-
work with two parallel tasks. Task 1 has a higher variance of
completion time probability and lower probability of success
than task 2, everything else is the same. The resulting graph
of CE is shown in Figure 9. There are 3 local maxima in
this figure: one in the left side that corresponds to the task
two being scheduled first in sequential order, another on the
right side corresponding to the task one being first, and yet
another one in the furthermost corner of the graph repre-
senting both tasks being scheduled at time 0 and executed
in parallel.

In the course of the research, we were able to resolve this
issue by running the maximization procedure from different
start points. However, one may note that the number of
possible start points grows considerably with the complexity
of the task network and the algorithm that checks each and
every one of them is not scalable. One of the solutions we
are likely to pursue is to continuously run the maximization
from different starting points and stop the procedure when
the average marginal gain in CE equates to the marginal
cost of the time. We will devote further efforts to the study
of this and other possibilities in our future research.

5.2 Computational Complexity

The computational complexity of the maximization pro-
cedure is determined by two parameters: first, the procedure
itself is a non-linear maximization over 2N choice variables
with internal precedence constraints. Second, to calculate a
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Figure 8: CE maximizing schedules and CE values for the plan in Figure 1 and r € [-0.03,0.07].

Figure 9: Local maxima for two parallel tasks.

certainty equivalent value for every time schedule, the max-
imization procedure should be able to build a corresponding
gamble and find its expected utility.

While the realm of the non-linear maximization is well-
studied and offers a fair selection of ready-to-use techniques?,
effective algorithms for the second part are not nearly as well

“In particular, we use the Nelder-Mead simplex (direct
search) method from the Matlab optimization toolbox.

researched. At this point, we know the direct approach in
the form of the algorithm in Figure 5 and can estimate its
complexity as at most O (2%~! x N), where K is the max-
imum number of tasks that are scheduled to be executed in
parallel.

The complexity estimate is based on the observation that
the depth of the payoff-probability tree is N and that any
subtree following an unsuccessful task execution has a depth
of no more than K — 1. The last statement follows from the
assumption that there are no more than K — 1 tasks run-
ning in parallel to the one that failed and therefore no other
tasks will start after the failure was reported. Whether it is
possible to create an algorithm with significantly lower com-
putational costs is one of the questions we plan to address
in future research.

Note that in the real commercial projects the ratio K/N is
usually low, since not many of these exhibit the high degree
of the parallelism. Also, the experimental results in Sec-
tion 4.2 allow us to conclude that K/N ratio is likely to be
lower for the risk-averse agents (presumably, businessmen)
than for the risk-lovers (gamblers). These two considera-
tions may relax the need for a faster algorithm and thus will
be examined in the first place.

5.3 Sack Allocation in RFQ

The last issue we want to address in this paper is how to
use the CE maximization-based time allocation procedure



to construct RFQs in the MAGNET framework. The CE
maximizing schedule itself contains information on what is
the most desirable task scheduling for the customer agent.
However, it is hard to imagine that there will always be
bids that cover exactly the same time intervals as in the
maximizing schedule.

We suggest the following approach: first, let’s specify
what percentile a of the maximum CE value is considered
acceptable by the agent. Define the start time interval for
the task n as all values of ¢}, such that for the schedule that
differs from the maximizing one only in the start time of
the task n the value of CE is no less than a of the max-
imum. Graphically, this process is represented by build-
ing the projection of the CE a-percentile graph (see Fig-
ure 10) on the task n time axis. Further assume there is
only one continuous interval of t;, values for every n € N
and denote it as [t; ,¢57]. Finally, submit the interval
[t%‘,ti + (t,sﬂ' - t%)], where t5 and tf are times from the
maximizing schedule, as a part of the RFQ.

The suggested way of composing the RFQ from the CE
maximizing schedule is an intuitive consequence of the CE
maximization idea. Nevertheless, there are many open ques-
tions concerning this approach, e.g., there could be more
than one interval [t;, ;"] for some tasks, so we need to
distinguish them in the RFQ composition. Also, it is pos-
sible that the acceptable CE percentile must be lowered for
some tasks in the task network, due to the low bid submis-
sion rate. It is even possible, that the RFQ needs to be split
in two or more parts, so that the requests for rare goods and
services are submitted first and the rest of RFQ is composed
after the bids for those rare products are received.

Although we do not specifically address the above men-
tioned and related issues in the current paper, the CE max-
imization approach promises to be powerful and flexible
enough to help us resolve those in our future research.
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Figure 10: Contours of some a-percentile graphs for

the CE graph in Figure 9.

6. RELATED WORK

Auctions are becoming the predominant mechanism for
agent-mediated electronic commerce [7]. AuctionBot [20]
and eMEDIATOR [17] are among the most well known ex-
amples of multi-agent auction systems. The determination

of winners of combinatorial auctions [13] is hard. Dynamic
programming [16] works for small sets of bids, but does not
scale and imposes significant restrictions on the bids. Algo-
rithms such as Bidtree [17] and CASS [6] reduce the search
complexity, but their criterion to select bids is just price.
Our bids include a time window for each task, and so bid
selection cannot be separated from scheduling.

A set of optimal and approximate methods, along with
a test set for algorithm evaluation, was published by Fu-
jishjima et al [6]. Hoos and Boutilier[8] describe a stochastic
local search approach to solving combinatorial auctions, and
characterize its performance with a focus on time-limited sit-
uations. A key element of their approach involves ranking
bids according to expected revenue; it’s hard to see how this
could be adapted to the MAGNET domain with temporal
and precedence constraints, and without free disposal. An-
dersson et al [1] describe an Integer Programming approach
to the winner determination problem in combinatorial auc-
tions. Nisan [14] extended this with an analysis of bidding
languages for combinatorial auctions. More recently, Sand-
holm [18] has described an improved winner-determination
algorithm called CABOB that uses a combination of linear
programming and branch-and-bound techniques. It is not
clear how this technique could be extended to deal with the
temporal constraints in MAGNET, although the bid-graph
structure may be of value.

Expected Utility Theory [15] is a mature, yet controver-
sial, field of Economics, that attracted many supportive as
well as critical studies, both theoretical [10, 11] and empiri-
cal [19, 9]. We believe that the expected utility and related
concepts will attract more attention in the relation to au-
tomated auctions soon, in particular, because they suggest
a practical way of describing risk estimations and temporal
preferences.
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