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We describe a computational model of planning, scheduling, and execution that is capable of supporting
the interactions of a self-interested agent with other agents in a contracting environment over an extended
period of time.

The model is appropriate for situations in which a customer agent, in order to fulfill its goals, must
contract with other supplier agents for all or part of the necessary tasks. The agents are all assumed to be
self-interested and with limited rationality. Supplier agents providing resources or services attempt to gain
the greatest possible benefit, and customer agents requesting resources or services will attempt to pay the
lowest price.

To evaluate this model, we have implemented a multi-agent distributed market and contracting environ-
ment and we are performing empirical studies on problem scenarios.

1 Overview

Plan Execution by Contracting is the type of activity in which a contractor agent, in order to fulfill its
goals, must contract with other self-interested supplier agents for all or part of the necessary tasks. We
are interested in agents that exhibit goal-directed behavior in a multi-agent environment. Specifically, we
consider heterogeneous and self-interested agents that negotiate among themselves in order to carry out plans
that require the resources of other agents. Furthermore, we assume the existence of an external market entity
which facilitates agent interactions.

The contracting market framework we consider incorporates a three step protocol with a contractor agent
issuing a call-for-bids, suppliers replying with bids, and the contractor accepting the bids it chooses. We
avoid the need for open-ended negotiation by means of bid break-downs and time-based decommitment
penalties [7]. Once the contractor agent receives the bids, it must evaluate the bids based on cost and
time constraints, and select the optimal set of bids (or parts thereof) which can satisfy its goals. This task
assignment forms the basis of an initial schedule for the execution of the tasks.

It is important to note that, in contrast to other planning/scheduling systems in which the agent is directly
in charge of execution, in Plan Execution by Contracting, the contractor agent delegates the execution to
supplier agents. As such, the system must provide a mechanism for monitoring task execution, throughout the
life of the contract. This monitoring mechanism must interact with the planning and contracting components,
since decommitments or under-performance by suppliers may require rebidding or replanning.

Within the market framework outlined above, these activities are encapsulated in a market session [9]. A
market session (or simply a session) is the vehicle through which market services are delivered dynamically
to participating agents. It serves as an encapsulation for a transaction in the market, as well as a persistent
repository for the current state of the transaction. We have chosen the term “session” to emphasize the
temporally extended nature of many of these interactions. For example, if an agent wishes to build a new
house, it initiates a session and issues a call-for-bids. The session extends from the initial call-for-bids
through the negotiation, awards, construction work, the paying of bills, and the final closing. In other



words, the session encloses the full life of a contract or a set of related contracts. The session mechanism
ensures continuity of partially-completed transactions, and relieves the participating agents from having to
keep track of detailed negotiation status themselves.

The interactions involved in the basic bidding and execution cycle among the contractor, supplier, and
market session are illustrated in Figure 1. During execution, the interactions can be much more complex than
indicated here, since either party may decommit from a contract (and pay a penalty), and the contractor
is continuously monitoring and repairing its plan by replanning and rebidding when events fail to proceed
according to expectations.
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Figure 1: A Typical Session-Mediated Negotiation

At this point, we are mainly interested in the requirements of the contractor agent and its interaction
with the Market Session. A contractor agent in our scheme contains three major functional elements, as
shown in Figure 2. The planner converts a top-level goal into a partial-order plan, the bid manager acquires
commitments from other agents to execute portions of the plan, and the contract supervisor oversees execution
of the plan as contracted. We discuss each of these elements, as well as the relevant portions of the market
infrastructure, in more detail in the following sections.

2 Components of the Contractor Agent

2.0.1 Planner

We assume the existence of a nonlinear planner [42, 33, 5, 26] that converts a top-level goal into a partial-
order plan according to a domain model. A plan is composed of a combination of operations to be executed
by the agent itself and operations that are available from other agents, as expressed in the Market Ontology.
The ontology is a domain-specific description of operations, constraints, and other information [17] about
tasks that can be performed by supplier agents in a particular market. The planner need not linearize the
plans it emits with respect to time, since multiple agents in the market environment are capable of executing
operations in parallel. Instead, temporal constraints among plan operations are embedded in the plan and
included in the call-for-bids as outlined in [7].
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Figure 2: A Magnet Contractor Agent

The task network provided to the bid manager consists of a set of task descriptions of nonzero length, the
temporal constraints among them, and possibly nonzero delays between tasks, to cover communication and
transportation delays. The agent incorporates a temporal reasoning system similar to Dean and McDermott’s
Time Map Manager [11] to build and maintain this representation.

Our decision to use a traditional non-linear planner, as opposed to a formulation that integrates planning
and scheduling [29], is based on the fact that the integrated approach operates from a resource-based time
line, and in our system the set of resources is unknown at the time the planner operates. This, and the
need for rational behavior on the part of the agent, introduces three complications to the standard non-linear
planning problem. These issues must be addressed either by modifying the planner or by adding functionality
to the agent.

1. For a feasible goal there are in general infinitely many plans that satisfy the goal. The planner,
and indeed the agent itself, lacks the knowledge to determine at the time the plan is formulated
which of these will be the lowest cost. Therefore, the ideal solution would be to have the planner
produce a collection of possible plans and let the agent search over plan expansions to minimize cost.
Unfortunately, this severely complicates the negotiation protocol, and we have elected not to attempt
this. Instead, we propose using admittedly weak domain-specific heuristics to choose a plan that is
likely to be among the lower-cost possible plans.

2. At the time the planner is invoked, some portion of a previous plan to achieve the goal may have
already been executed. Finding a new plan that incorporates some or all of those elements might
require modifications to the basic planning algorithm.

3. When the planner is invoked due to plan failure, it is possible that the plan has become infeasible due
to lack of a vendor who is willing to bid on some particular element of the plan. Lack of bids could
result either from no vendor willing to bid on a particular operation, or lack of resources to perform
an operation in the time frame requested in the bid specification. This will require that the planner
be capable of producing a new plan that does not incorporate the infeasible element.

2.1 Bid Manager

The bid manager is responsible for ensuring that resources are assigned to each of the tasks of a plan, that
the assignments taken together form a feasible schedule, and that the cost of executing the plan is minimized.
This cost must also be less than the value of the goal at the time the goal is reached. The bid manager may
make assignments to local resources or acquire commitments from other agents to execute portions of the
plan. Such commitments are gained through a negotiation protocol, such as the one described in [23] or the



one proposed in [36]. When the bid manager is invoked, the set of tasks in the plan may already be partially
assigned. This is because the contract supervisor may use the bid manager to repair partially-completed
plans in which previously determined assignments have failed.

The bid manager must perform these tasks in order to carry out its responsibilities: (1) constructing and
issuing the call for bids, (2) receiving and evaluating bids, and (3) accepting a set of bids.

1. Construct and Issue Call For Bids.

For each element of the plan, the bid manager has two choices for making an assignment: (i) use a
resource that is permanently available in the market at a fixed price, (see, for instance, how to create and
use catalogues on the Web [24]), or (ii) assign a resource through the bidding process (possibly including
local resources).

The call-for-bids C contains a subset of the tasks in the plan P with their precedence relations. There
might be elements of P that are not included in the call-for-bids C. This could happen, for instance, if the
contracting agent decides to use an advertised resource.

Let C.tes(s) denote the early start time for task s as specified in a call-for-bids C. Other contexts in which
times and other factors can be specified include bids (b.tes(s)) and the computed critical path (A.tes(s)).
The notation s’ < s denotes the constraint t.(s') < ts(s), meaning that task s’ must be complete before task
s can start. A necessary condition for this is (tes(s) + de(s")) < (ti (s) — de(s)).

For each task s in the call-for-bids C, the bid manager must specify:

e a time window, consisting of an earliest start time C.t.s(s) and a latest finish time C.t;(s),

e a set of precedence relationships C.Pred(s) = {s' € C|s' < s}, the set of other tasks s’ € C whose
completion must precede the start of s, and

e a decommitment penalty dcom(s). This is the penalty the supplier has to pay to the contractor agent
if the supplier decommits. (See [7] for further explanation of the decommitment penalties.)

There is no requirement that the bidding be driven through a single call-for-bids, and there is no re-
quirement that all precedence relationships be specified in the call-for-bids. The only requirement is that all
specified precedence relationships be among tasks in a single call-for-bids.

When specifying time windows for tasks, the bid manager must in general do some guessing. The agent
may have general knowledge of normal durations of tasks, or it may not. In order to minimize bid prices,
vendors need flexibility in making resource commitments. Two possible strategies are (a) to use time windows
that start at time o and end at time tg404;, where o is the start time for the entire plan and ¢,,4 is the
deadline for achieving the top level goal, and (b) to schedule tasks ahead of time using approximate durations,
computing early start and late finish times using the Critical Path algorithm [22]. The latter approach is
preferable if adequate approximations are known, because it will reduce the likelihood of bids being rejected
for failure to mesh with the overall schedule, and it will reduce the average bid prices to the extent that it
reduces speculative resource commitments on the part of suppliers.

The Critical Path algorithm walks the directed graph of tasks and precedence constraints, forward from
time o to compute the earliest start ¢, and finish t.; times for each task, and then backward from time
t40a1 to compute the latest finish ¢y and start ¢;; times for each task. The minimum duration of the entire
plan is called the makespan of the plan. The difference between 4,4 and the latest early finish time is called
the total slack of the plan. If 4,4 is set equal to ty + makespan, then the total slack is 0, and all tasks for
which t.; = t)r are called critical tasks. Paths in the graph through critical tasks are called critical paths.

2. Receive and Evaluate Bids.

When bids are returned, the bid manager must assemble them into a minimum-cost feasible schedule in
order to determine which bids to accept.

Let B be the set of returned bids, each bid b € B includes a price b.price(P') for some subset P’ of
the elements of the call-for-bids, prices b.price(s) for individual elements of the bid subset s € P’, and
timing information for the bid elements. Note that (b.price(P') < Y7, p b.price(s) represents a discount
associated with the bid b. Timing information for a bid b and a task s includes early start b.t.s(s), late
finish b.tj(s), and expected duration b.d.(s) for each task in the bid. The semantics of a bid is that a
supplier is willing to perform the task s for the bid price b.price(s) starting at any time ¢5(s) such that
b.tes(s) <ts(s) < (b.tyr(s) — b.de(s)), and finishing at time (¢5(s) + b.dc(s)).



The bid evaluation for a plan P consisting of tasks s € P, may be given as an objective function of
the total cost and total expected schedule risk. A naive method for calculating the total cost would be to
determine the sum of the minimum costs for each subtask over all the returned bids. In other words, given
the subset By of all returned bids which contain the subtask s, the cost of s can be determined as:

cost(s) = ;IEIiBIl (b.price(s) + b.dcom(s) X b.PT geom(s))

where b.price(s) is the bid price price for task s in the bid b containing task s, and the expected cost of the
decommitment penalty for a task in a specific bid b is computed by multiplying the decommitment penalty
of the bid b.dcom(s) by the probability of decommitment b.Pr jcom(s)-

The total cost can now be determined as ), ., cost(s). However, this naive evaluation does not take
into account the discounts that may be available as part of each returned bid. We have proposed an efficient
algorithm for finding a set of bids [8].

As noted above, another important component of bid evaluation is the determination of the expected
schedule risk. The contractor agent would seek to minimize both the total cost and the total schedule
risk. The expected cost associated with schedule risk can be given by a heuristic function risk applied to a
constraint-tightness measurement, k(path), which is determined according to the slack available along each
partial path through the plan:

TotalRisk = » risk(bpasm-k(path)).
patheP

Intuitively, the risk associated with constraint tightness is higher whenever accepting a particular set of
bids will increase the probability of missing the goal deadline, or of missing the latest start time (which is
b.tir(s) — b.de(s)) specified in the bid b € B, containing task s. Finding an effective and computationally
inexpensive formula for this will be addressed empirically. This is a similar problem to that addressed by the
notion of tezturesin [15]. OQur approach is to measure constraint tightness by path, where a path is a sequence
of tasks starting at the beginning of the plan and extending toward the goal along successor relations. We use
partial paths as well as complete paths for this calculation, because tasks can be constrained both by their
precedence relationships and by the time windows specified in the bids. For example, in the task network in
Figure 3, there are 9 paths, all starting with s1, as follows:

S1 81 < 83 81 < 84
S1 < S2 S1 < 83 < S5 S1 < 84 < 85
81 <82 <8¢ 81 <83<85 <8¢ 81 <84<85< 8¢

52
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Figure 3: Example task network

Along each path, we measure constraint tightness as the ratio of slack to expected duration, as in

tiy (Slast) —to — Zse;uath de (S)
ZsEpath de (S)

where s;,5 is the last task on path and tg is the start time. An example of a schedule risk computation
is risk(k(path)) = Wye~W2k(path) where W, and W, are tuning parameters. Parameter W, determines the

k(path) =



slope of the curve, while W7 scales the result. A path with no slack would then have a constraint tightness
cost of W1. Whether to allow slightly infeasible schedules to be contracted at all depends on the ability of
the contract supervisor to recover from plan breakage, for example by offering bidders a reward for early
completion.

We will consider additional factors to compute risk. These will be based on two sources of information:

1. Knowledge of the domain, or experience. This will be used to inform the agent that some kinds of
work are inherently riskier than others. Examples might be tasks that are more complex or involve
more creative content. We expect this knowledge to come from the ontology of the domain.

2. Experience with suppliers, either on the part of the agent or shared among agents (for example, through
the Better Business Bureau described in [9]). This will lead the agent to ascribe a higher risk to some
suppliers than others.

3. Accept Bids.

After building the schedule, the bid manager sends bid acceptance messages to the vendors of accepted
bids, specifying which parts of which bids are accepted. In our contracting protocol, this completes the
negotiation process.

2.2 Contract supervisor

The contract supervisor is responsible for overseeing execution of the plan as contracted, and making decisions
about how to respond when events do not proceed as expected. It receives the task assignments from the
bid manager. Through the market, it also receives updates on plan execution from contracted vendors. It
maintains the time map with tasks, vendor commitments, and temporal constraints among tasks. For each
event, it must decide whether to respond, and if so, whether to respond directly to a particular vendor,
whether to re-bid a portion of the plan, or whether to re-plan and re-bid one or more subgoals of the plan.

The bid manager produces a set of task assignments, each of which includes one or more tasks from the
plan, along with the contract data for execution of that task. Contract data includes the task, the resources
committed to carrying out that task, an agreed-upon price, an agreed-upon time window and temporal
constraints, and the supplier and contractor decommitment penalties. The temporal data from the accepted
bids is added to the set of constraints in the time map.

All the activities of the contract supervisor revolve around the maintenance of the time map. The time
map can be thought of visually as a Gantt chart, decorated with contract data and temporal constraints
among tasks. For each task s the time map records an early start time t.s(s), a late finish time t;(s), an
expected duration d.(s), and the set of tasks Succ(s) = {s’ € P|s < s'} that are forced to be successors of s
by precedence constraints.! Let b, denote a returned bid that contains a subtask s. The early start time for
a task s is

tes(s) = max(A.tes(s), bs.tes(s))

where the notation A.t.s(s) refers to the earliest possible start time for task s as computed by the Critical
Path algorithm. In other words, the derived early start time for a task s is the later of the early start time
for s computed by the Critical Path algorithm and the beginning of the time window in the accepted bid for
s. Similarly, the late finish time for a task s is

ty (8) = min(.A.tlf (8), by dyy (S))

or the earlier of the late finish time for task s computed by the Critical Path algorithm and the end of the
time window in the accepted bid for s. The slack for task s is

slack(s) =ty (s) — tes(s) — bs.de(s).

A task s for which slack(s) = 0 is said to be a critical task. This can occur for any one of three reasons:

!Note that the relationship Succ(s) refers to the successors of s, while the relationship Pred(s) in the call-for-bids refers to
the predecessors of s.



1. If the completion time ¢ (s) is constrained by bs.t;r(s) in the accepted bid, then a delay in starting s
would violate the bid contract.

2. If the completion time ¢ (s) is constrained by the deadline for the overall goal ¢4,4, either directly or
transitively through Succ*(s), derived by computing the Critical Path, then a delay in completion will
delay goal achievement.

3. If the completion time ¢ (s) is transitively constrained by by .t;(s") for some s’ € Succ*(s), then a
delay in starting s would violate the bid contract for s'.

3 Interactions of the Contractor Agent with the Market Session

As time passes and the execution of the plan proceeds, the contract supervisor works in conjunction with the
market session to drive the plan to completion. In general, the session is responsible for releasing tasks to the
suppliers when their prerequisites are satisfied, and for assessing decommitment penalties when the parties
fail to satisfy their commitments. In the process, the session forwards to the contract supervisor notifications
of task release and task completion events. The contract supervisor is then responsible for making decisions
and taking appropriate action in response to those notifications.

In order to carry out its role, the market session maintains a performance monitoring table, which is
essentially a stripped-down version of the time map maintained by the contractor agent. It contains, for each
contracted task s, the winning bidder, the early start and late finish times ¢.s(s) and t;(s), the contracted
subset of successor tasks C.Succ(s) (it is possible that not all tasks s’ € Succ(s) have been contracted out),
and the decommitment penalty function dcom(s).

The performance monitoring table is maintained by updating the expected release time t,.(s') for each
task s’ € C.Succ*(s) whenever the expected finish time t;(s) of a task s changes. Each time the expected
release time t,.(s) of a task s is changed, the market session updates

slack(s) = tif (s) — de(s) — t-(s)

to determine whether task s has become critical (slack(s) = 0), or infeasible (slack(s) < 0). If so, the
contractor is notified to enable it to take appropriate action.

Each supplier agent s is notified by the market session of task releases, and of changes to t,(s), for each
task s for which a bid has been awarded to supplier s. Because of this limited visibility, the market session
can be implemented as a fully distributed component which keeps the information related to supplier s local
to that supplier, thus reducing network traffic and eliminating the possible bottleneck that would occur if
all update processing were funneled through a single point.

The contract supervisor maintains the full version of the time map. It is responsible for updating expected
release times whenever the market session does not have full precedence information, and for releasing each
task s’ € Succ(s) upon completion of any task s that is not known to the market or for which the precedence
relationship s < s’ is not known to the market. The contract supervisor is also responsible for responding to
situations where the plan becomes infeasible, and for notifying the market session of the actions it decides
to take.

There are two types of events to which the contract supervisor must respond. Event notifications from
the market session trigger updates to the time map, and possibly other actions as detailed below. The
passage of time without notification of an expected event is also considered to be an event by the contract
supervisor. In order to make rational decisions in response to events, the contract supervisor maintains a
set of metrics on the plan and its representation in the time map. These metrics include:

e the time-dependent value of the goal Vy,4,? discounted by the likelihood of plan failure and expectation
of paying contractor decommitment penalties,

o the total slack in the schedule, slackotar = tyoar — dm — to, where d,, is the makespan derived from the
the Critical Path calculation,

2In general, the value of the goal may vary arbitrarily with time, but initially we consider only the case where the value is
a constant V., = V until some time 4,4, after which V., = 0.



e the total cost of the plan, including the cost of all outstanding bids, the amount already paid on
completed bids, the cost of using local resources to process any locally-assigned portions of the plan,
minus the expected value of supplier decommitment penalties.

Following are the classes of events to which the contract supervisor must respond, and a brief outline of
the response options.

Nominal Completion. Task s was completed (as expected) at time t(s) = t5(s) + de(s), where d.(s) is
the duration of the task as specified in the bid. No action is required.

Early Completion. Task s was completed at time t¢(s) < t5(s) + de(s). For s’ € Succ*(s), update t,(s")
if necessary (it is not necessary if #,.(s') = tes(s')). If any update to a task s’ € C.Succ(s) is not known
to the market session, the contract supervisor must notify the session of the change. If a critical path
is affected, and if the value of the plan could be improved by changing b.t.,(s) for some task s, then the
contract supervisor could request the vendor of s whether the schedule can be moved up, and for what
cost. After evaluating the cost/benefit tradeoff, the contract supervisor will request schedule changes
accordingly.

Vendor Decommitment. When a supplier decommits, the contract supervisor has three choices: (1)
contractor decommitment, (2) attempt to re-bid decommitted task(s), (3) attempt to re-plan and re-
bid unsatisfied subgoal(s). The choice that is expected to maximize the profit is the one that will be
made.

Missing Event. Completion events are considered missing if their failure to arrive triggers violation of
a temporal constraint. This is considered non-performance on the part of the vendor. The contract
supervisor responds by notifying the market session of vendor non-performance.

Late Completion. A late completion event is one that occurs later than promised but does not violate
temporal constraints. It is a configuration option whether to treat this as a missing event. If not, the
contract supervisor responds by re-evaluating the critical path and notifying vendors of affected tasks
of changed time windows. All such time window changes will result in tighter windows.

Notice of Late Completion. If a vendor wishes to extend a deadline, it must initiate a negotiation
with the contractor using a Notice of Late Completion, giving a new expected completion time and an
updated bid. The contract supervisor must then choose whether to accept the updated bid, with the
new time commitment, or whether to treat this event as a contractor decommitment.

4 Related Work

Planning, Scheduling, and Execution

Interleaving planning with execution has been proposed by many (for instance, [28]) but it is rarely used in
practice. Wilkins [47] interleaves planning with execution, but uses two different systems, one for planning
(SIPE-2) and one for reactive execution (PRS-CL).

Projects such as O-Plan [10] and the Multiagent Planning architecture (MPA) [48] aim at developing an
architecture for large planning problems and mixed initiative planning, where coordination of experts and
adaptation to changes in tasks, requirements, and environment are needed. Our goal is to automate the
planning/scheduling/execution cycle of a single autonomous agent that needs the services of other agents to
accomplish its task. Pollack’s DIPART system [30] assumes multiple agents that operate independently but
all work towards the achievement of a global goal. Our agents are trying to achieve their own goal and to
maximize their profit, there is no global goal.

Various classes of scheduling problems have been considered in the Operations Research literature [22,
25, 16]. Many interesting scheduling problems are computationally intractable, and numerous heuristic
approaches have been described [6, 21, 31]. Much of the recent work in scheduling has focused on the
problem of maintaining or updating an existing schedule in the face of changes [50, 40]. All of these systems
are concerned with determining schedules for individual resources; the assumption is that there is some set
of tasks to be done, and some set of resources available to do those tasks, and the problem is to find an



optimal or near-optimal assignment of tasks to resources over time. The contractor agent we describe is not
resource-limited; these scheduling approaches will be needed for the supplier agents, but they are not well
suited for the problem that the contractor agent must solve.

The notion of using an explicit time-map to support reasoning about events, actions, states, and causality
over time was first described in [11] and further elaborated in [4]. Hanks [20] has dealt with the problem
of projecting the effects of actions into the future under uncertainty. Schwalb, Kask, and Dechter [3§]
describe a formal system for reasoning about time and events, including another form of a time map called
a Conditional Temporal Network.

The problem faced by the contractor agent in our design is that of monitoring a plan and its schedule,
and finding ways to repair it when it is broken. Muscettola [29] and Tate et al [43] advocate combining the
planning and scheduling problems to deal with this issue. Muscettola’s approach is based on maintaining
state information over time for a relatively fixed set of resources, and so is not directly applicable to our
work. Doyle [13] argues for an economic approach to plan maintenance, an approach that makes sense in
the context of a market-based agent.

Market Architectures for Agents

Markets play an essential role in the economy, by facilitating the exchange of information, goods, and
services [1], and there is growing evidence that software agents will play an increasing role as mediators in
electronic markets [19, 41]. Mediators typically provide services such as searching for a product or supplier,
negotiating the terms of a deal, providing payment services, and ensuring delivery of goods.

The architecture we propose improves on current proposals for standardizing an open architecture for
electronic commerce [44, 27, 3] by adding support for complex negotiations during the contracting phase,
for monitoring the execution of contracts, and for curtailing unproductive value-based [32] or time-based [7]
counterspeculation by participating agents.

Of the essential functions of a market identified by [1], existing software agents mostly satisfy the need
to search for product and price information (see, for instance, [12], but there is a growing need for agents
capable of more sophisticated automated negotiations [2, 18].

Automated contracting protocols generally assume direct agent-to-agent negotiation. For example, Smith
[39] pioneered research in communication among cooperating distributed agents with the Contract Net
protocol. The Contract Net has been extended by Sandholm and Lesser [34] to self-interested agents. In
these systems, agents communicate and negotiate directly with each other. In our proposed work, agents
interact with each other through a market.

Mechanisms to reduce counterspeculation, such as the Clarke tax mechanism [14] or the Vickrey auc-
tion [45] have been proposed for automated negotiation of self-interested agents. In Sandholm’s TRACONET
system [36] both the bidding and contract execution mechanisms are complicated by the need to operate in an
environment where agents cannot trust each other. He does not assume or take advantage of an independent
market infrastructure. The architecture we present can support, among other things, the Vickrey auction,
and eliminates one of its limitations by providing a structure that can act as a trusted auctioneer [35].

To the extent that we require the existence of an external market mechanism as an intermediary, our
proposed framework is similar to that of Wellman’s market-oriented programming used in AuctionBot [49]
and The University of Michigan Digital Library [46]. AuctionBot, for instance, supports a variety of auction
types each imposing a set of market rules on the agent interactions. Hence, the auctions, themselves,
become the intermediaries. In contrast, our framework provides explicit market mechanisms which can not
only specify and enforce auction parameters, but also support more complex interactions such as automated
contracting. Furthermore, these market mechanisms also enforce general market rules and “social laws”,
such as government regulations, by which all participants must abide.

Rosenschein and Zlotkin [32] showed how the behavior of the agents can be influenced by the set of rules
that the system designers choose for the agents’ environment. In their study the agents are homogeneous and
there are no side payments. In other words, the goal is to share the work, not to pay for work. Sandholm’s
agents [34, 37, 36] redistribute work among themselves by a contracting mechanism. Unlike Rosenschein and
Zlotkin, Sandholm considers agreements involving explicit payments, but he also assumes that the agents
are homogeneous — they have equivalent capabilities, and any agent can handle any task. We do not make



any of these assumptions. Our agents are heterogeneous, and decide on their own what tasks to handle by
responding to a call for bids that requires specific tasks or products within a specified time window.

5 Conclusions and Future Work

The MAGNET system offers a framework and capability for multiple agents to reach agreement on complex
contracts in a fully autonomous manner.

This paper has presented a work in progress. The basic MAGNET infrastructure and the evaluator
have been implemented and tested, and much of the functionality needed for mixed-initiative behavior is in
place. A user interface that allows user interaction with the evaluator has not been built, and effectively
communicating such multidimensional evaluation results will be a challenge.
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